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Introduction 

Recent studies have shown that most common genetic risks produce modest effect at least when 

considered individually, which indicates that complex diseases are the result of the joint efforts 

of many genetic and environmental contributors, and possibly their interactions. The objective in 

this report is to find the correct model that describes the given data generated synthetically as 

well as the association between the outcome variable and independent variables. Box-Cox 

transformation will be used to find the non-linear transformation of the dependent variable if 

needed.  

Methodology 

The original dataset contains 1000 obeservations with one dependent variable and twenty-six 

independent variables (including 6 environmental variables and 20 genetic variables). A detailed 

chart that summarized the statistics of all variables is included in appendix Figure 1. I used 

mice() function in "mice " package which implements an iterative Markov Chain Monte Carlo 

type of algorithm to impute missing values by creating multiple imputations. The method for 

numerical variables is " Predictive Mean Matching "(pmm) and the method for categorical 

variables is " Logistic Regression "(logreg). I also turn G variables into indicator variables using 

as.factor() function in R. 

I employ two steps to solve the problem. The fisrt step is trying to use stepwise methods to 

eliminate variables with negligible effects. The second step is to apply all-possible-regressions 

(or best subset regression) to my selected set of candidate variables. Then I compare each 

candidate models formerly selected by each metric(adjusted R squared, BIC). Finally I perform 

model adequacy checking and model diagnostics by checking residual plots and influential 

points. 

I first build the regression model on all variables to investigate the main effects using lm() 

function. The p-value is < 2.2e-16. This means that, at least, one of the predictor variables is 

significantly related to the outcome variable. The adjusted R squared for this model is  0.3626 

meanning that there is small asscociation between the independent variables and the dependent 

variable. The residual plot is a horizontal line without distinct patterns is an indication for a 

linear relationship.The Scale-Location plot residuals are spread equally along a horrizontal line. 

The studentized Breusch-Pagan test with p-value 0.3967 indicates we cannot reject the null 

hypothesis constant variance of error terms. Thus there is no need for transformations of 

response variable. There are some possible outliers (#786,#479,#130) that may affect our 

regression model. Moreover, if we look at the p-values of the estimated coefficients, we see that 

only some predictors are statistically significant related to y. Significant independent variables 

(E3+G2+G9+ G19) are picked out for further analysis. This means we need to perform some 

variable selection. One reason for variable selection is that the variance of the prediction y will 

increase and the precision of the parameter estimates will decrease as the number of regressors 

increases.  



We have 26 E and G variables and 325(26 choose 2) interactions terms. It is not feasible to 

examine all 2^(26+325) regression models. We first consider variable selection without adding 

interaction terms. We will use regsubsets function in leaps package to perform stepwise 

regressions to check whether we could exclude any regressor with insignificant effects. 

Regsubsets can be used to identify different best models with different size. The function 

provides 3 methods to perform all possible regressions: (1) forward selection , (2) backward 

elimination , and (3) stepwise regression, which is just a combination of the previous two. Note 

that backward elimination requires the number of observations larger than the number of 

variables, so that the full model can be fit.  During the entire modeling process I choose to apply 

all three procedures in order to learn more things that might be overlooked by using only one 

selection method from the data. The metric I used to evaluate each model is the adjusted R2 and 

the Bayesian Information Criterion (BIC). After the selection, both the three procedures agree on 

two set of variables , one for biggest adjusted R2 and one for smallest BIC. Now I have two 

candidate models without interaction terms, i.e 

model.m1(E3+E5+G2+G3+G4+G6+G8+G9+G11+G14+G18+G19+G20) with largest adjusted 

R2 and model.m2(E3+G2+G9+G19) with smallest BIC.  

After I have picked out my candidate variables without interactions, next task is to assess the 

contribution of interactions among the variables. I added the second order interactions by using 

the second power and variables from model.m1 in the model request. Doing the hypothesis test 

gives me significant candidates including interacion terms. After I compared the hypothesis test 

result with the result I got in model.m1 and model.m2, I picked two sets of important variables 

for doing my second order interactions variable selections, namely 

E3+E5+G2+G3+G8+G9+G18+G11+G19+G20 and E3+G2+G9+G19. The approach is similar 

to previous method using regsubsets except now I have to do three types of variable selections 

for each set of candidate variables. Comparing the best models recommended by each criterion 

gives me 2 candidate models: model.m3 (Y~E3+E3:G2+E3:G9+G9:G19) and model.m4 

(Y~E3+G2+E3:G9+G2:G18+G9:G19). 

Since there is possible third order or higher order interactions among all variables, I continue to 

use the variables with highest correlation with response variables (E3+G2+G9+ G19) to do my 

third order interactions analysis. These individual regressors appear both in the t tests and 

variable selection results. After I incorprated third order interactions in my analysis, I get a 

candidate model model.m5: Y~E3+G2+G9+G9:G19.  

The stepwise regression has indicated 5 final candidate models(model.m1, model.m2, model.m3, 

model.m4 and model.m5). The big picture is E3+G2+G9+G19 and E3:G9 interaction term seem 

to be are significantly associated with the response variables and hence should be used to 

perform all-possible-regressions. I use regsubsets() function in r , set method = "exhasustive" 

and use third order interactions. This produces best subsets ranked by various criteria. After 

performing a comprehensive analysis of all my candidate models using lm(),anova() and BIC, 

adjusted R squared values. The models I choosed are model.m3 and model.m6 (Y~ 

E3+E3:G2+E3:G9+G9:G19+E3:G2:G9+G2:G9:G19). However, further analysis shows that 

model.m6 has a serious multicolineary problem and dose not have satisfactory performance in 

other statistics such as BIC. Since I have the third-order interactions have already shown serious 

multicolineary problem, there is no need to consider fourth-order interaction. My best model is 

set to be model.m3. 



The final step is applying specific analysis through the model. So far we have assumed that there 

is a linear relationship between the predictors and y. If the  relationship is quite far from linear, 

then it may yield an unstable model. I will check the linear regression assumptions by starting 

with the residual plots. The residuals can be contained in a horizontal band and no obvious 

pattern in plots(Fig.2). This suggests that we can assume linear relationship between the 

predictors and the outcome variables.We can also see from the plots some potential 

outliers(#786,#63,#479). Then I will check the Normal Q-Q plot(Fig.2): There is small deviance 

from the line. However it does not affect the model greatly, so we can assume normality.The 

third scale-location plot(Fig.2) shows a horizontal line with equally spread point, suggesting no 

heteroscadacity problemm, which implys no need for a transformation on regressors or higher 

order terms. The studentized Breusch-Pagan test with p value 0.4242 also indicates constant 

variance in error terms. We use Cook’s distance to check the influence of a value. This metric 

considers both leverage and residual size. We consider leave these points in our model for 

further analysis. The plot(Fig.2) above highlights the top 3 most extreme points (#63, #943 and 

#97) including outliers and leverage points. Next I will perform model diagnostics to the 

individual influential points separately. My cutoff values for diagnostics are as follows: 

DIFFITS > 2*square root of 5/1000 and Cook's distance >1 are considered influential points. 

Hatvalues > 8/1000 are considered high leverage points. Absolute r student values> 2 are 

considered outliers. I use vif() function in car package to examine multicolinearty. The result 

shows no seriously problematic VIF(variable inflation factor) values. I also applied lack of fit 

test, partial F test and analysis of variance to my final model model.m3. The result is 

summarized in the following section. 

 

Results 

The variables that I chose were E3,E3:G2,E3:G9,G9:G19. My final model is:   

Y = 6.5763664+ 0.0966821𝐸3 +0.0029542  E3𝐺9 + 0.0031117E3G2-0.1209036 

𝐺9𝐺19. Our analysis found associations with genetic variables and the environmental. In specific, 

the 𝐸3𝐺2 , 𝐸3𝐺9 and 𝐺9𝐺19 interaction. I use anova() to do a partial F test for a reduced subset 

model(model.m3) and a full model contains all interactions and variables(full.model2) . The first 

test is partial F test, P value is 0.85 hence I accept the null hypothesis that the extra coefficents 

in the full model is zero. The second test is lack of fit test, I use pureErrorAnova() to test my 

model.m4. The P value is  0.0136<0.001. Hence I accept the null hypothesis that the model 

provides an adequate model in the significance level 0.001. Our analysis of variance table 

anova() shows that each coefficient in my model  has P-value less than 2.2e-16. The adjusted R-

squared is 0.3549 The residual standard error is s 0.1747 on 994degrees of freedom and the F-

statistic is110.9 of 5 and 994 degrees of freedom with p-value: 2.2e-16. My candidate models 

are summarized in Table2. To further estimate the accuracy for our model such as the 

confidence intervals, we can see they all exclude 0(Table 2). Model adequacy checking are in 

(Fig2) and some of the influential points are displayed in Table 3. 

 

Conclusion and Discussion 



Our model includes variables that has significant main effect on the outcome variable and the 

95% confidence interval excludes 0 for each term. The model has p-value less than 0 in t-test. 

Our model is significant and there are no obvious problems with assumptions or other 

indications of model inadequacy. However our model has a low value for R squared meaning the 

proportion of variability explained by the model is low. This is because a lot of variability 

occurs in the measurements of the y. Here the variability in the response probably ouccurs 

because the response is a subjective measurement of psychology problem. Our result is affected 

by the variance of our test subjects. Another limitation occured in our regression analysis is that 

since we have included interaction terms in our model, there might be some mild multicolinearty 

problems. While strong multicollinearity might produce poor estimates of the individual model 

parameters, this does not necessarily mean the model performs badly in prediction. If our data 

are restricted to be near the regions of the X space, then precise predictions can often be made. 

Since we also discard model.m6 because of its high multicolinearty, we could have the 

possibility of omitting one or more third-order interactiton terms. Another limitation is for 

influential points, since we cannot know if there is an error in measurement , so we have no 

justification for their removals. Alternatively, we could use robust estimation techniques to deal 

with influential points.  
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Appendix  

Figure 1  

  

            Figure 2  

 

 

Table 1   



model.m1 's variables : E3+E5+G2+G3+G4+G6+G8+G9+G11+G14+G18+G19+G20 

model.m2 's variables : E3+G2 +G9+G19 

model.m3 's variables : E3+E3:G9+G9:G19+E3:G2 

model.m4 's variables : E3+G2+E3:G9+G9:G19+G2:G18 

model.m5 's variables : E3+G2+G9+E3:G9+G9:G19 

model.m6 's variables :  E3+E3:G2+E3:G9+G9:G19+E3:G2:G9+G2:G9:G19  

full.model 2 : all Es , Gs and any second order interaction terms among them 

 

Table 2 

              Estimate Std. Error t value Pr(>|t|)     2.5 %    97.5 % 

 (Intercept)  6.5763664  0.2798909  23.496  < 2e-16  6.027121  7.125615 

  E3          0.0966821  0.0056100  17.234  < 2e-16  0.085673  0.107690 

  E3:G9       0.0029542  0.0006041   4.890  1.17e-06  0.001768  0.004139 

 G9:G19      -0.1209036  0.0152151  -7.946  5.19e-15 -0.150761 -0.091046 

 G2:E3       0.0031117  0.0002808  11.082  < 2e-16  0.002560   0.003662 

 

Table 3(influential points) 

      Id          cd                  lev          r         dffit  

4     4 0.007101851 0.012976818 -1.8023187 -0.2066579      -0.0413489688 

30   30 0.004061152 0.006010368  2.0105006  0.1563377       0.0085344267 

36   36 0.003380180 0.029735686 -0.8133503 -0.1423874       0.0102246418 

54   54 0.014266593 0.024964019 -1.8306354 -0.2929198       0.0021601456 

63   63 0.023394751 0.010930621 -3.5850882 -0.3768850      -0.0318754770 

87   87 0.004544200 0.005981293  2.1324441  0.1654161       0.0083202551 

93   93 0.012604112 0.024670654 -1.7308228 -0.2752753      -0.0121726297 



97   97 0.018088947 0.031434823  1.8308569  0.3298340      -0.0295534885 

99   99 0.006185047 0.028144048 -1.1321823 -0.1926676      -0.0198946305 

 

Technical Appendix  
E <- read.csv("E_1646.csv",header = TRUE) 

Y <- read.csv("Y_1646.csv",header = TRUE) 

G <- read.csv("G_1646.csv",header = TRUE) 

data <- data.frame(cbind(Y, E, G)) 

str(data) 

library(leaps) 

library('dplyr') 

library('caret') 

library(mice) 

library(broom) 

library(knitr) 

data <- data %>% 

  mutate( 

    G1= as.factor(G1), 

    G2 = as.factor(G2), 

    G3 = as.factor(G3), 

    G4 = as.factor(G4), 

    G5 = as.factor(G5), 

    G6 = as.factor(G6), 

    G7 = as.factor(G7), 

    G8 = as.factor(G8), 

    G9 = as.factor(G9),  

    G10 = as.factor(G10), 

    G11= as.factor(G11), 



    G12 = as.factor(G12), 

    G13 = as.factor(G13), 

    G14 = as.factor(G14), 

    G15 = as.factor(G15), 

    G16 = as.factor(G16), 

    G17 = as.factor(G17), 

    G18 = as.factor(G18), 

    G19 = as.factor(G19),  

    G20 = as.factor(G20), 

  ) 

names(data) <- c('Y', paste0('E', 1:6), paste0('G', 1:20)) 

summary(data) 

set.seed(123) 

imdata <- mice(data, print=FALSE) 

meth <- imdata$meth 

for(i in 1:20){meth[paste0("G",i)] <- "logreg" } 

imData <- mice(data, maxit = 3, print=FALSE,method=meth) 

complete <- complete(imData) 

md.pattern(complete) 

# To test if there is any relationship between the outcome and the predictors, we start with fitting a 

multiple linear regression model using all the predictors 

full.model <- lm(Y ~., data = complete) 

main <- summary (full.model) 

main 

 

full.model2 <- lm(Y~(.)^2,data=complete) 

main2 <- summary (full.model2) 

main2 

 



full.model3 <- lm(Y~(.)^3,data=complete) 

main3 <- summary (full.model3) 

main3 

library(knitr) 

kable(main$coefficients[ abs(main$coefficients[,4]) <= 0.001, ], caption='Sig Coefficients') 

 

kable(main2$coefficients[ abs(main2$coefficients[,4]) <= 0.01, ], caption='Sig Coefficients') 

plot(full.model) 

install.packages('lmtest') 

lmtest::bptest(full.model1)  

fit1.back <- regsubsets(Y~., data = complete, nvmax = 26,nbest = 1,method = "backward", really.big = T) 

fit1.step<- regsubsets(Y~., data = complete, nvmax = 26,nbest = 1,method = "seqrep", really.big = T) 

fit1.forward<- regsubsets(Y~., data = complete, nvmax = 26,nbest = 1,method = "forward", really.big = T) 

fit1.back.sum <- summary(fit1.back) 

fit1.back.sum  

fit1.step.sum <- summary(fit1.step.reg) 

fit1.step.sum  

fit1.forward.sum<-summary(fit1.forward) 

fit1.forward.sum 

which.min(fit1.back.sum$bic) 

which.max(fit1.back.sum$adjr2) 

which.min(fit1.step.sum$bic) 

which.max(fit1.step.sum$adjr2) 

which.min(fit1.forward.sum$bic) 

which.max(fit1.forward.sum$adjr2) 

 

model.m1 <- lm(Y~E3+E5+G2+G3+G4+G6+G8+G9+G11+G14+G18+G19+G20,data= complete) 

model.m2 <- lm(Y~E3+G2+G9+G19,data=complete) 



summary(model.m1) 

summary(model.m2) 

glance(model.m1) 

glance(model.m2) 

anova(model.m1,model.m2) 

car::vif(model.m1) 

car::vif(model.m2) 

set.seed(123) 

inter <- lm(Y~(E3+E5+G2+G3+G4+G6+G8+G9+G11+G14+G18+G19+G20)^2, data = complete) 

temp <- summary(inter) 

kable(temp$coefficients[ abs(temp$coefficients[,4]) <= 0.1, ], caption='Sig Coefficients') 

num <- 2^(55) 

fit2.seq <- regsubsets(Y~(E3+E5+G2+G3+G8+G9+G18+G11+G19+G20)^2, data = complete, 

nvmax=num,nbest = 1,method = "seqrep", really.big = TRUE) 

fit2.forward <- regsubsets(Y~(E3+E5+G2+G3+G8+G9+G18+G11+G19+G20)^2, data = 

complete,nvmax=num, nbest = 1,method = "forward", really.big = TRUE) 

fit2.back <- regsubsets(Y~(E3+E5+G2+G3+G8+G9+G18+G11+G19+G20)^2, data = complete, 

nvmax=num, nbest = 1,method = "backward", really.big = TRUE) 

fit2.seq.sum <- summary(fit2.seq) 

fit2.seq.sum 

fit2.forward.sum <- summary(fit2.forward) 

fit2.forward.sum 

fit2.back.sum <- summary(fit2.back) 

fit2.back.sum 

which.min(fit2.seq.sum$bic) 

which.max(fit2.seq.sum$adjr2) 

which.min(fit2.forward.sum$bic) 

which.max(fit2.forward.sum$adjr2) 

which.min(fit2.back.sum$bic) 

which.max(fit2.back.sum$adjr2) 



fit3.forward <- regsubsets(Y~(E3+G2+G9+G19)^2, data = complete, nvmax = 1024,nbest = 1,method = 

"forward", really.big = T) 

fit3.seq <- regsubsets(Y~(E3+G2+G9+G19)^2, data = complete, nvmax = 1024,nbest = 1,method = 

"seqrep", really.big = T) 

fit3.back <- regsubsets(Y~(E3+G2+G9+G19)^2, data = complete, nvmax = 1024,nbest = 1,method = 

"backward", really.big = T) 

 

fit3.forward.sum <- summary(fit3.forward) 

fit3.back.sum <- summary(fit3.back) 

fit3.seq.sum <- summary(fit3.seq) 

fit3.forward.sum 

fit3.back.sum 

fit3.seq.sum 

which.min(fit3.forward.sum$bic) 

which.max(fit3.forward.sum$adjr2) 

which.min(fit3.seq.sum$bic) 

which.max(fit3.seq.sum$adjr2) 

which.min(fit3.back.sum$bic) 

which.max(fit3.back.sum$adjr2) 

model.m3 <- lm(Y~E3+E3:G2+E3:G9+G9:G19,data=complete) 

model.m4 <- lm(Y~E3+G2+E3:G9+G2:G18+G9:G19,data = complete) 

summary(model.m3) 

summary(model.m4) 

glance(model.m3) 

glance(model.m4) 

car::vif(model.m3) 

car::vif(model.m4) 

anova(model.m3,model.m4) 

fit4.forward <- regsubsets(Y~(E3+G2+G9+G19)^3, data = complete, nvmax = 1000,nbest = 1,method = 

"forward", really.big = T) 



fit4.seq <- regsubsets(Y~(E3+G2+G9+G19)^3, data = complete, nvmax = 1000,nbest = 1,method = 

"seqrep", really.big = T) 

fit4.back <- regsubsets(Y~(E3+G2+G9+G19)^3, data = complete, nvmax = 1000,nbest = 1,method = 

"backward", really.big = T) 

fit4.forward.sum <- summary(fit4.forward) 

fit4.back.sum <- summary(fit4.back) 

fit4.seq.sum <- summary(fit4.seq) 

fit4.forward.sum 

fit4.back.sum 

fit4.seq.sum 

which.min(fit4.forward.sum$bic) 

which.max(fit4.forward.sum$adjr2) 

which.min(fit4.seq.sum$bic) 

which.max(fit4.seq.sum$adjr2) 

which.min(fit4.back.sum$bic) 

which.max(fit4.back.sum$adjr2) 

temp1 <- lm(Y~E3+G2+G9+G9:G19,data = complete) 

temp2 <- lm(Y~E3+G2+G9+G9:G19+E3:G9,data = complete) 

summary(temp1) 

summary(temp2) 

glance(temp1) 

glance(temp2) 

car::vif(temp1) 

car::vif(temp2) 

model.m5 <- temp1 

modl.m1 <-lm(Y~E3+E5+G2+G3+G4+G6+G8+G9+G11+G14+G18+G19+G20,data= complete) 

model.m2<-lm(Y~E3   +G2                     +G9+G19,data=complete) 

model.m3<-lm(Y~E3                     +E3:G9+G9:G19+E3:G2,data=complete) 

model.m4<-lm(Y~E3   +G2               +E3:G9+G9:G19+G2:G18,data = complete) 



model.m5<-lm(Y~E3   +G2            +G9+E3:G9+G9:G19,data = complete) 

library(leaps) 

subset <- regsubsets(Y~(E3+G2+G9+G19)^3,nbest=5,data = complete,really.big = T,method='exhaustive') 

which.min(summary(subset)$bic) 

which.min(summary(subset)$cp) 

which.max(summary(subset)$adjr2) 

coef(subset,16)  

coef(subset,26) 

model.m6 <- lm(Y~  E3+E3:G2+E3:G9+G9:G19+E3:G2:G9+G2:G9:G19 ,data =complete) 

x <- glance(model.m4)%>% 

  dplyr::select(adj.r.squared,AIC,BIC,p.value) 

kable(x) 

y <- glance(model.m3)%>% 

  dplyr::select(adj.r.squared,AIC,BIC,p.value) 

kable(y) 

z <- glance(model.m6)%>% 

  dplyr::select(adj.r.squared,AIC,BIC,p.value) 

kable(z) 

car::vif(model.m6) 

pureErrorAnova(model.m6) 

 

library(broom) 

model.diag.metrics <- augment(model.m3)  

head(model.diag.metrics) 

plot(model.m3, 1) 

plot(model.m3, 2) 

plot(model.m3, 3) 

plot(model.m3, 5) 



plot(model.m3, 4) 

par(mfrow=c(2,2)) 

par(mfrow=c(1,1)) 

plot(model.m3) 

Diagnostics <- data.frame(Id = 1:1000, cd = cooks.distance(model.m3), lev = hatvalues(model.m3), r = 

rstudent(model.m3), dffit = dffits(model.m3),dfbeta = dfbeta(model.m3)) 

print(subset(Diagnostics,abs(r)>=2 )) 

print(subset(Diagnostics, lev > 10/1000)) 

library(dplyr) 

print(subset(Diagnostics, cd > 1 |abs(dffit)> 2*sqrt(5/1000) )) 

model.diag.metrics %>% 

  top_n(5, wt = .cooksd) 

print(car::vif(model.m3)) 

summary(model.m3) 

confint(model.m3) 

library(alr3) 

library(lmtest) 

anova(model.m3) 

anova(model.m3,full.model2) 

bptest(model.m3)  

lrtest(model.m3,full.model2) 

pureErrorAnova(model.m3) 

  

                                                                  End of Report  
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